Regularized fuzzy clusterwise ridge regression
نویسندگان
چکیده
Fuzzy clusterwise regression has been a useful method for investigating cluster-level heterogeneity of observations based on linear regression. This method integrates fuzzy clustering and ordinary least-squares regression, thereby enabling to estimate regression coefficients for each cluster and fuzzy cluster memberships of observations simultaneously. In practice, however, fuzzy clusterwise regression may suffer from multicollinearity as it builds on ordinary least-squares regression. To deal with this problem in fuzzy clusterwise regression, a new method, called regularized fuzzy clusterwise ridge regression, is proposed that combines ridge regression with regularized fuzzy clustering in a unified framework. In the proposed method, ridge regression is adopted to estimate clusterwise regression coefficients while handling potential multicollinearity among predictor variables. In addition, regularized fuzzy clustering based on maximizing entropy is utilized to systematically determine an optimal degree of fuzziness in memberships. A simulation study is conducted to evaluate parameter recovery of the proposed method as compared to the extant non-regularized counterpart. The usefulness of the proposed method is illustrated by an application concerning the relationship among the characteristics of used cars.
منابع مشابه
Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable
The traditional regression analysis is usually applied to homogeneous observations. However, there are several real situations where the observations are not homogeneous. In these cases, by utilizing the traditional regression, we have a loss of performance in fitting terms. Then, for improving the goodness of fit, it is more suitable to apply the so-called clusterwise regression analysis. The ...
متن کاملFunctional fuzzy clusterwise regression analysis
We propose a functional extension of fuzzy clusterwise regression, which estimates fuzzy memberships of clusters and regression coefficient functions for each cluster simultaneously. The proposedmethod permits dependent and/or predictor variables to be functional, varying over time, space, and other continua. The fuzzy memberships and clusterwise regression coefficient functions are estimated b...
متن کاملTwo-Parameters Fuzzy Ridge Regression with Crisp Input and Fuzzy Output
In this paper a new weighted fuzzy ridge regression method for a given set of crisp input and triangular fuzzy output values is proposed. In this regard, ridge estimator of fuzzy parameters is obtained for regression model and its prediction error is calculated by using the weighted fuzzy norm of crisp ridge coefficients. . To evaluate the proposed regression model, we introduce the fu...
متن کاملA MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملFrom PAC-Bayes Bounds to KL Regularization
We show that convex KL-regularized objective functions are obtained from a PAC-Bayes risk bound when using convex loss functions for the stochastic Gibbs classifier that upper-bound the standard zero-one loss used for the weighted majority vote. By restricting ourselves to a class of posteriors, that we call quasi uniform, we propose a simple coordinate descent learning algorithm to minimize th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. Data Analysis and Classification
دوره 4 شماره
صفحات -
تاریخ انتشار 2010